Role of ribosome release in regulation of tna operon expression in Escherichia coli.

نویسندگان

  • K V Konan
  • C Yanofsky
چکیده

Expression of the degradative tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and tryptophan-induced transcription antitermination. In cultures growing in the absence of added tryptophan, transcription of the structural genes of the tna operon is limited by Rho-dependent transcription termination in the leader region of the operon. Tryptophan induction prevents this Rho-dependent termination, and requires in-frame translation of a 24-residue leader peptide coding region, tnaC, that contains a single, crucial, Trp codon. Studies with a lacZ reporter construct lacking the spacer region between tnaC and the first major structural gene, tnaA, suggested that tryptophan induction might involve cis action by the TnaC leader peptide on the ribosome translating the tnaC coding region. The leader peptide was hypothesized to inhibit ribosome release at the tnaC stop codon, thereby blocking Rho's access to the transcript. Regulatory studies with deletion constructs of the tna operon of Proteus vulgaris supported this interpretation. In the present study the putative role of the tnaC stop codon in tna operon regulation in E. coli was examined further by replacing the natural tnaC stop codon, UGA, with UAG or UAA in a tnaC-stop codon-tnaA'-'lacZ reporter construct. Basal level expression was reduced to 20 and 50% when the UGA stop codon was replaced by UAG or UAA, respectively, consistent with the finding that in E. coli translation terminates more efficiently at UAG and UAA than at UGA. Tryptophan induction was observed in strains with any of the stop codons. However, when UAG or UAA replaced UGA, the induced level of expression was also reduced to 15 and 50% of that obtained with UGA as the tnaC stop codon, respectively. Introduction of a mutant allele encoding a temperature-sensitive release factor 1, prfA1, increased basal level expression 60-fold when the tnaC stop codon was UAG and 3-fold when this stop codon was UAA; basal level expression was reduced by 50% in the construct with the natural stop codon, UGA. In strains with any of the three stop codons and the prfA1 mutation, the induced levels of tna operon expression were virtually identical. The effects of tnaC stop codon identity on expression were also examined in the absence of Rho action, using tnaC-stop codon-'lacZ constructs that lack the tnaC-tnaA spacer region. Expression was low in the absence of tnaC stop codon suppression. In most cases, tryptophan addition resulted in about 50% inhibition of expression when UGA was replaced by UAG or UAA and the appropriate suppressor was present. Introduction of the prfA1 mutant allele increased expression of the suppressed construct with the UAG stop codon; tryptophan addition also resulted in ca. 50% inhibition. These findings provide additional evidence implicating the behavior of the ribosome translating tnaC in the regulation of tna operon expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribosome recycling factor and release factor 3 action promotes TnaC-peptidyl-tRNA Dropoff and relieves ribosome stalling during tryptophan induction of tna operon expression in Escherichia coli.

Upon tryptophan induction of tna operon expression in Escherichia coli, the leader peptidyl-tRNA, TnaC-tRNA(2)(Pro), resists cleavage, resulting in ribosome stalling at the tnaC stop codon. This stalled ribosome blocks Rho factor binding and action, preventing transcription termination in the tna operon's leader region. Plasmid-mediated overexpression of tnaC was previously shown to inhibit cel...

متن کامل

Conserved residues Asp16 and Pro24 of TnaC-tRNAPro participate in tryptophan induction of Tna operon expression.

In Escherichia coli, interactions between the nascent TnaC-tRNA(Pro) peptidyl-tRNA and the translating ribosome create a tryptophan binding site in the ribosome where bound tryptophan inhibits TnaC-tRNA(Pro) cleavage. This inhibition delays ribosome release, thereby inhibiting Rho factor binding and action, resulting in increased tna operon transcription. Replacing Trp12 of TnaC with any other ...

متن کامل

Conserved Residues Asp16 and Pro24 of TnaC-tRNA Participate in Tryptophan Induction of tna Operon Expression

In Escherichia coli, interactions between the nascent TnaC-tRNA peptidyl-tRNA and the translating ribosome create a tryptophan binding site in the ribosome where bound tryptophan inhibits TnaC-tRNA cleavage. This inhibition delays ribosome release, thereby inhibiting Rho factor binding and action, resulting in increased tna operon transcription. Replacing Trp12 of TnaC with any other amino acid...

متن کامل

Role of leader peptide synthesis in tryptophanase operon expression in Escherichia coli K-12.

We used site-directed mutagenesis to replace the Escherichia coli tryptophanase (tna) operon leader peptide start codon with AUC. This change greatly decreased the uninduced rate of tna operon expression, and it also lowered the response to inducer. We conclude that leader peptide synthesis plays an essential role in tna operon expression.

متن کامل

Molecular Study of Phase Variation of Type 1 Fimbriae in Uropathogenic Escherichia coli O44 Serotypes during Touching with Solid Surfaces

Background & Aims: Type 1 fimbriae is the most common adhesion factor in urine tract infection. In this Study, presence of virulence genes in isolated strains of uropathogenic E.Coli, O serotyping and molecular detection of phase variation of type 1 fimbriae were assessed during solid surfaces exposure. Methods: Isolated E.coli from urine samples of patients were serotyped by using serologic me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 181 5  شماره 

صفحات  -

تاریخ انتشار 1999